October 1987 Revised March 2002

FAIRCHILD

SEMICONDUCTOR

CD4013BC Dual D-Type Flip-Flop

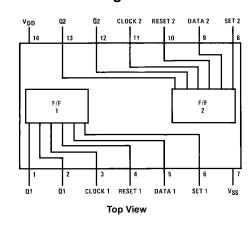
General Description

The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent data, set, reset, and clock inputs and "Q" and "Q" outputs. These devices can be used for shift register applications, and by connecting "Q" output to the data input, for counter and toggle applications. The logic level present at the "D" input is transferred to the Q output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line respectively.

Features

■ Wide supply voltage range: 3.0V to 15V

- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL: fan out of 2 driving 74L compatibility: or 1 driving 74LS

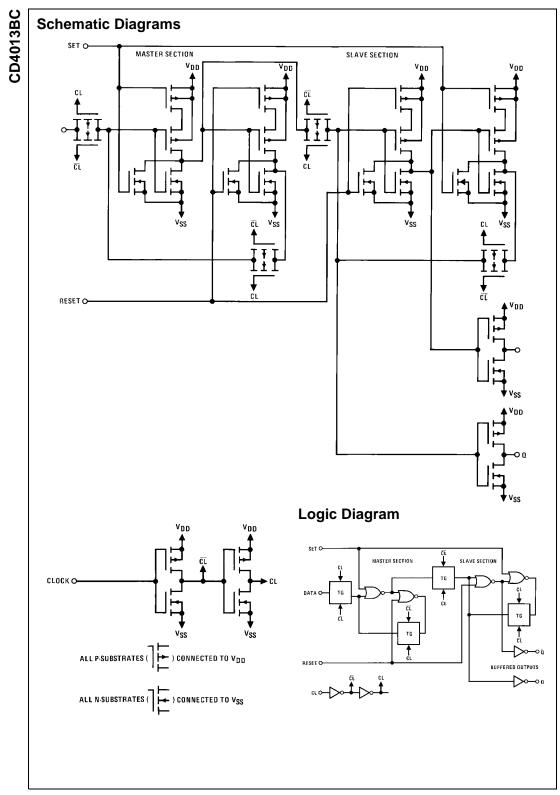

Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial electronics
- Remote metering
- Computers

Ordering Code:

Order Number	Package Number	Package Description		
CD4013BCM M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
CD4013BCSJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
CD4013BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.				

Connection Diagram



Truth Table

	CL (Note 1)	D	R	S	Q	Q	
	γ	0	0	0	0	1	
	~	1	0	0	1	0	
	~	х	0	0	Q	Q	
	х	х	1	0	0	1	
	х	х	0	1	1	0	
	x	х	1	1	1	1	
No	No Change						

x = Don't Care Case

Note 1: Level Change

Absolute Maximum Ratings(Note 2)

	С
–0.5 V_{DC} to +18 V_{DC}	C
–0.5 V_{DC} to V_{DD} +0.5 V_{DC}	h
$-65^{\circ}C$ to $+150^{\circ}C$	C
	No
700 mW	sat the
500 mW	me
	diti No
260°C	
	-0.5 V _{DC} to V _{DD} +0.5 V _{DC} -65°C to +150°C 700 mW 500 mW

DC Electrical Characteristics (Note 3)

Recommended Operating

Conditions (Note 3)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN})

0 V_{DC} to V_{DD} V_{DC}

Operating Temperature Range (T_A) -55°

10⁻⁵

0.1

0.1

–55°C to +125°C

+3 V_{DC} to +15 V_{DC}

lote 2: "Absolute Maximum Ratings" are those values beyond which the afety of the device cannot be guaranteed, they are not meant to imply that ne devices should be operated at these limits. The tables of "Recomnended Operating Conditions" and "Electrical Characteristics" provide contitions for actual device operation.

Note 3: $V_{SS} = 0V$ unless otherwise specified.

–55°C +25°C +125°C Conditions Symbol Parameter Units Min Min Max Min Тур Max Max $V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$ Quiescent Device I_{DD} 1.0 1.0 30 Current $V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$ 2.0 2.0 60 μA $V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS} 4.0 4.0 120 VOL LOW Level $|I_0| < 1.0 \ \mu A$ Output Voltage $V_{DD} = 5V$ 0.05 0.05 0.05 v $V_{DD} = 10V$ 0.05 0.05 0.05 $V_{DD} = 15V$ 0.05 0.05 0.05 HIGH Level |I_O| < 1.0 μA V_{он} Output Voltage $V_{DD} = 5V$ 4 95 4 95 4 95 v $V_{DD} = 10V$ 9.95 9.95 9.95 $V_{DD} = 15V$ 14.95 14.95 14.95 VIL LOW Level |I_O| < 1.0 μA Input Voltage $V_{DD}=5V,\,V_O=0.5V$ or 4.5V1.5 1.5 1.5 v $V_{DD} = 10V, V_O = 1.0V \text{ or } 9.0V$ 3.0 3.0 3.0 $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$ 4.0 4.0 4.0 $|I_O| < 1.0 \ \mu A$ VIH HIGH Level Input Voltage $V_{DD}=5V,\,V_{O}=0.5V$ or 4.5V3.5 3.5 3.5 v V_{DD} = 10V, V_{O} = 1.0V or 9.0V 7.0 7.0 7.0 $V_{DD} = 15 V, \, V_O = 1.5 V \text{ or } 13.5 V$ 11.0 11.0 11.0 LOW Level Output $V_{DD}=5V,\ V_O=0.4V$ 0.64 0.51 0.88 0.36 I_{OL} $V_{DD} = 10V, V_{O} = 0.5V$ Current (Note 4) 1.6 1.3 2.25 0.9 mΑ V_{DD} = 15V, V_O = 1.5V 4.2 3.4 8.8 2.4 $V_{DD} = 5V, V_{O} = 4.6V$ HIGH Level Output I_{OH} -0.64 -0.51 -0.88 -0.36 $V_{DD} = 10V, V_{O} = 9.5V$ Current (Note 4) -1.6 -1.3 -2 25 -0.9 mΑ $V_{DD} = 15V, V_O = 13.5V$ -4.2 -3.4 -8.8 -2.4 $V_{DD} = 15V, V_{IN} = 0V$ Input Current -0.1 -10⁻⁵ I_{IN} -0.1 -1.0

Note 4: I_{OH} and I_{OL} are measured one output at a time.

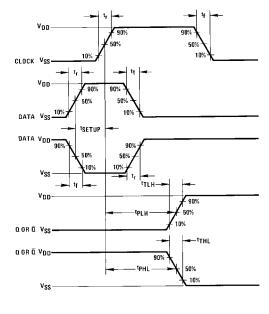
 $V_{DD} = 15V, V_{IN} = 15V$

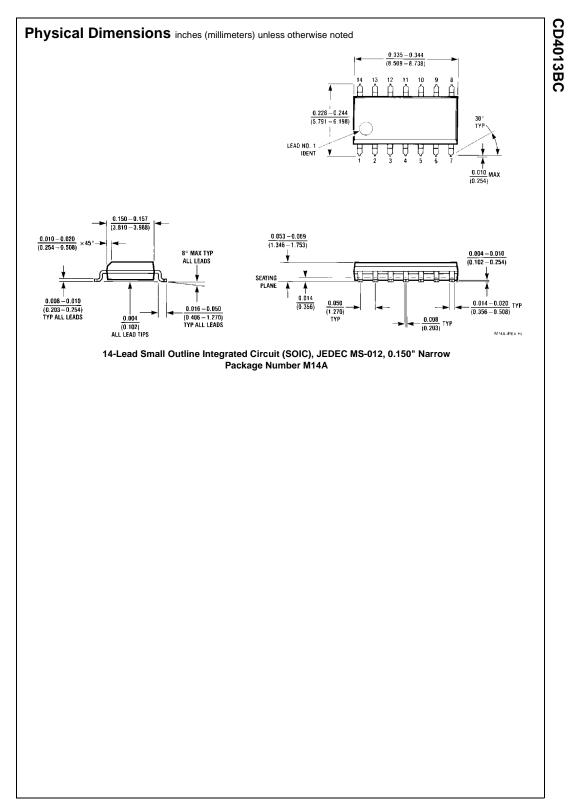
www.fairchildsemi.com

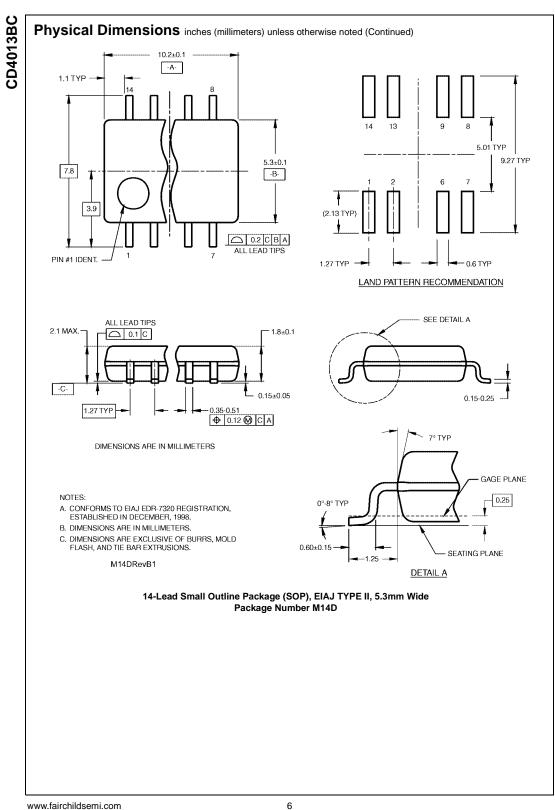
μΑ

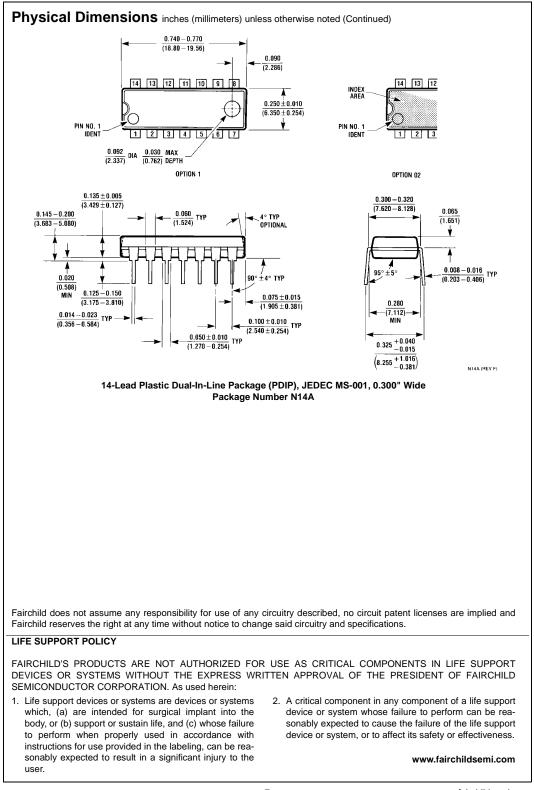
1.0

C
ш
က
Σ
O.
4
Δ
C
_


. .


AC Electrical Characteristics (Note 5) $T_A = 25^{\circ}C$, $C_L = 50$ pF, $R_L = 200$ k, unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCK OPERAT	TION					
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	350	
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		65	120	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WL} , t _{WH}	Minimum Clock	$V_{DD} = 5V$		100	200	
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		32	65	
t _{RCL} , t _{FCL}	Maximum Clock Rise and	$V_{DD} = 5V$			15	
	Fall Time	$V_{DD} = 10V$			10	μs
		$V_{DD} = 15V$			5	
t _{SU}	Minimum Set-Up Time	$V_{DD} = 5V$		20	40	
		$V_{DD} = 10V$		15	30	ns
		$V_{DD} = 15V$		12	25	
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2.5	5		
	Frequency	$V_{DD} = 10V$	6.2	12.5		MHz
		$V_{DD} = 15V$	7.6	15.5		
SET AND RESET	OPERATION					
t _{PHL(R)} ,	Propagation Delay Time	$V_{DD} = 5V$		150	300	
t _{PLH(S)}		$V_{DD} = 10V$		65	130	ns
		$V_{DD} = 15V$		45	90	
t _{WH(R)} ,	Minimum Set and	$V_{DD} = 5V$		90	180	
t _{WH(S)}	Reset Pulse Width	$V_{DD} = 10V$	1	40	80	ns
		V _{DD} = 15V		25	50	
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF


Note 5: AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

CD4013BC Dual D-Type Flip-Flop